Text-independent speaker verification using ant colony optimization-based selected features
نویسندگان
چکیده
With the growing trend toward remote security verification procedures for telephone banking, biometric security measures and similar applications, automatic speaker verification (ASV) has received a lot of attention in recent years. The complexity of ASV system and its verification time depends on the number of feature vectors, their dimensionality, the complexity of the speaker models and the number of speakers. In this paper, we concentrate on optimizing dimensionality of feature space by selecting relevant features. At present there are several methods for feature selection in ASV systems. To improve performance of ASV system we present another method that is based on ant colony optimization (ACO) algorithm. After feature reduction phase, feature vectors are applied to a Gaussian mixture model universal background model (GMM-UBM) which is a text-independent speaker verification model. The performance of proposed algorithm is compared to the performance of genetic algorithm on the task of feature selection in TIMIT corpora. The results of experiments indicate that with the optimized feature set, the performance of the ASV system is improved. Moreover, the speed of verification is significantly increased since by use of ACO, number of features is reduced over 80% which consequently decrease the complexity of
منابع مشابه
Ant colony optimization-based selected features for Text- independent speaker verification
With the growing trend toward remote security verification procedures for telephone banking, biometric security measures and similar applications, automatic speaker verification (ASV) has received a lot of attention in recent years. The complexity of ASV system and its verification time depends on the number of feature vectors, their dimensionality, the complexity of the speaker models and the ...
متن کاملHighly Efficient Dimension Reduction for Text-Independent Speaker Verification Based on Relieff Algorithm and Support Vector Machines
Automatic speaker verification (ASV) systems are among the biometric systems used in security and telephone-based remote control applications. Recent years have witnessed an increasing trend in research on such systems. These systems usually use high dimension feature vectors and therefore involve high complexity. However, there is a general belief that many of the features used in such systems...
متن کاملMulti Objective Optimization Problem resolution based on Hybrid Ant-Bee Colony for Text Independent Speaker Verification
Today major section of automatic speaker verification (ASV) research is focused on multiple objectives like optimization of feature subset and minimization of Equal Error Rate (EER). As such, numerous systems for feature dimension reduction are proposed. This includes framework coaching and testing analysis for every feature set that could be a time esurient trip. Because of its significance, t...
متن کاملFeature Subset Selection Based on Ant Colony Optimization and Support Vector Machine
One of the significant research problems in pattern recognition is the feature subset selection. It is applied to select a subset of features, from a much larger set, through the elimination of variables that produce noise or strictly correlated with other already selected features, such that the selected subset is sufficient to perform the classification task. A hybrid method using ant colony ...
متن کاملStudy on PI Parameters Dynamic Tuning Based on Ant Colony Algorithm for Doubly-fed Wind Turbines
For the shortcoming that the PI controller parameters can’t been dynamic tuning in constant voltage control system of doubly-fed wind turbines, a PI controller parameters dynamic tuning strategy based on the ant colony optimization (ACO) algorithm is presented. This strategy makes the two parameters in PI controller as the ant of the ant colony, the controlled absolute error integral function t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011